English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Biological Macromolecules 2017-Oct

Investigation of molecular mechanism of recognition between citral and MARK4: A newer therapeutic approach to attenuate cancer cell progression.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Farha Naz
Faez Iqbal Khan
Taj Mohammad
Parvez Khan
Saaliqa Manzoor
Gulam Mustafa Hasan
Kevin A Lobb
Suaib Luqman
Asimul Islam
Faizan Ahmad

Keywords

Abstract

Microtubule affinity regulating kinase 4 (MARK4) is a member of AMP-activated protein kinase, found to be involved in apoptosis, inflammation and many other regulatory pathways. Since, its aberrant expression is directly associated with the cell cycle and thus cancer. Therefore, MARK4 is being considered as a potential drug target for cancer therapy. Here, we investigated the mechanism of inhibition of MARK4 activity by citral. Docking studies suggested that citral effectively binds to the active site cavity, and complex is stabilized by several interactions. We further performed molecular dynamics simulation of MARK4-citral complex under explicit water condition for 100ns and observed that binding of citral to MARK4 was quite stable. Fluorescence binding studies suggested that citral strongly binds to MARK4 and thereby inhibits its enzyme activity which was measured by the kinase inhibition assay. We further performed MTT assay and observed that citral inhibits proliferation of breast cancer cell line MCF-7. This work provides a newer insight into the use of citral as novel cancer therapeutics through the MARK4 inhibition. Results may be employed to design novel therapeutic molecule using citral as a scaffold for MARK4 inhibition to fight related diseases.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge