English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1984-Jun

Involvement of Calcium and Calmodulin in Membrane Deterioration during Senescence of Pea Foliage.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Y Y Leshem
S Sridhara
J E Thompson

Keywords

Abstract

The prospect that Ca(2+) promotes senescence by activating calmodulin has been examined using cut pea (Pisum sativum co Alaska) foliage as a model system. Senescence was induced by severing 17-day-old plants from their roots and maintaining them in aqueous test solutions in the dark for an additional 4 days. Treatment of the foliage with the Ca(2+) ionophore (A23187) during the senescence-induction period promoted a lateral phase separation of the bulk lipids in microsomal membranes indicating that internalization of Ca(2+) facilitates membrane deterioration. In addition, microsomal membranes from ionophore-treated tissue displayed an increased capacity to convert 1-aminocyclopropane-1-carboxylic acid to ethylene and an increased propensity to produce the superoxide anion (O(2) (tau)). Treatment of the tissue with fluphenazine during the senescence-induction period, which prevents binding of the Ca:Calmodulin complex to enzymes, delayed membrane deterioration as measured by these criteria. It also proved possible to simulate these in situ effects of the Ca(2+) ionophore on ethylene production and O(2) (tau) formation by treating microsomal membranes isolated from young tissue with phospholipase A(2) in the presence of Ca(2+) and calmodulin, and these effects of phospholipase A(2) and Ca:calmodulin were inhibited by calmodulin antagonists. The observations collectively suggest that internalized Ca(2+) promotes senescence by activating calmodulin, which in turn mediates the action of phospholipase A(2) on membranes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge