English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Biology and Medicine 1998-Mar

Involvement of hydrogen peroxide in topoisomerase inhibitor beta-lapachone-induced apoptosis and differentiation in human leukemia cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Y P Chau
S G Shiah
M J Don
M L Kuo

Keywords

Abstract

Beta-Lapachone a novel topoisomerase inhibitor, has been found to induce apoptosis in various human cancer cells. In this study we report that a dramatic elevation of hydrogen peroxide (H2O2) in human leukemia HL-60 cells following 1 microM beta-lapachone treatment and that this increase was effectively inhibited by treatment with antioxidant N-acetyl-L-cysteine (NAC), ascorbic acid, alpha-tocopherol. NAC strongly prevented beta-lapachone-induced apoptotic characteristics such as DNA fragmentation and apoptotic morphology. However, treatment of HL-60 cells with another topoisomerase inhibitor camptothecin (CPT) did not induce H2O2 production as compared to untreated cells. NAC also failed to block CPT-induced apoptosis. Correlated with these findings, we found that cancer cell lines K562, MCF-7, and SW620, contained high level of intracellular glutathione (GSH), were not elevated in H2O2 and were resistant to apoptosis after treatment with beta-lapachone. In contrast, cancer cell lines such as, HL-60, U937, and Molt-4 which have lower level of GSH, were readily increased of H2O2 and were sensitive to this drug. Furthermore, ectopic overexpression of Bcl-2 in HL-60 cells also attenuated beta-lapachone-induced H2O2 and conferred resistance to beta-lapachone-induced cell death. Beta-Lapachone at the concentration as low as 0.25 microM effectively induced HL-60 cells to undergo monocytic differentiation, as evidenced by CD14 antigenicity and alpha-naphthyl acetate esterase activity. Again, the beta-lapachone-induced monocytic differentiation was suppressed by NAC. These results suggest that intracellular H2O2 generation plays a crucial role in beta-lapachone-induced cell death and differentiation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge