English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Experimental Biology 2008-May

Is there life in the horny layer? Dihydropyridine and ryanodine receptors in the skin of female and male chickens (Gallus domesticus).

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Liisa M Peltonen
Satu Mänttäri

Keywords

Abstract

Previous findings in pigeons and chickens show that Ca(2+) may be accumulated inside the cornified skin cells and that Ca(2+) microenvironments with a lower- or higher-than-blood concentration may exist in the skin. It has been suggested that the skin may function as a secretory pathway or a reservoir for Ca(2+) recycling. To test this hypothesis, we studied the dermis and epidermis of female and male chickens in vivo to find out whether cellular mechanisms exist for the accumulation, recycling or secretion of Ca(2+). For calcium influx and intracellular Ca(2+) release, respectively, the density of dihydropyridine receptors (DHPRs) and ryanodine receptors (RyRs) was examined, using high-affinity (-)-enantiomers of dihydropyridine and ryanodine labelled with fluorophores. To investigate Ca(2+) utilization in the skin, the systemic and local activity of the enzyme alkaline phosphatase (ALP) and the concentration of ionic Ca(2+) were measured in plasma and in cutaneous extracellular fluid, collected by suction blister technique. We found that both DHPRs and RyRs were present in all skin layers from dermis to horny layer. However, receptor densities were highest in the surface layers. With a basic calcium-rich diet, receptor densities were higher in males, particularly in the dermis and mid-epidermis. After a reduction in the nutritional Ca(2+) input, receptor densities in males decreased to the same level as in females, in which the receptor densities were not affected by the amount of Ca(2+) in the diet or that resulting from coming out of lay. The extracellular concentration of ionic Ca(2+) per se was not found to affect the density of DHPRs and RyRs in the skin. Spatially, RyRs seem to be located in the periphery of the sebokeratinocyte. ALP activity was shown to be lower in the extracellular fluid than in the plasma in both sexes. However, activity in both extracellular domains increased significantly in females that had come out of lay. This was probably connected with the increased osteoblast activity related to the reformation of structural bone. In conclusion, voltage-sensitive L-type Ca(2+) channels for ion influx and RyRs for Ca(2+) release are present in the cells of the skin of female and male chickens. Higher densities in the males receiving excessive Ca(2+) imply an increased capacity for Ca(2+) influx and intracellular processing. Even though the functional interactions between DHPRs and RyRs in the sebokeratinocytes could not be demonstrated, peripheral colocation and high receptor densities at the level of exocytosis of the lamellar bodies point to their role as part of a signalling pathway for secretion. The finding that DHPRs and RyRs are present in the horny layer implies that the function of the outermost skin might be more active than had been previously thought and that this function might be both secretory and sensory.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge