English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Food Chemistry 2014-Jun

Isoflavones profiling of soybean [Glycine max (L.) Merrill] germplasms and their correlations with metabolic pathways.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Jae Kwang Kim
Eun-Hye Kim
Inmyoung Park
Bo-Ra Yu
Jung Dae Lim
Young-Sang Lee
Joo-Hyun Lee
Seung-Hyun Kim
Ill-Min Chung

Keywords

Abstract

The isoflavone diversity (44 varieties) of the soybean, Glycine max (L.) Merrill, from China, Japan, and Korea was examined by high-performance liquid chromatography. The profiles of 12 isoflavones identified from the grains were subjected to data-mining processes, including partial least-squares discriminant analysis (PLS-DA), Pearson's correlation analysis, and hierarchical clustering analysis (HCA). Although PLS-DA did not reveal significant differences among extracts of soybean from 3 countries, the results clearly show that the variation between varieties was low. The CS02554 variety was separate from the others in the first 2 principal components of PLS-DA. HCA of these phytochemicals resulted in clusters derived from closely related biochemical pathways. Daidzin, genistin, and glycitin contents were significantly correlated with their respective malonyl glycoside contents. Daidzein content correlated positively with genistein content (r=0.8189, P<0.0001). The CS02554 variety appears to be a good candidate for future breeding programs, as it contains high levels of isoflavone compounds. These results demonstrate the use of metabolite profiling combined with chemometrics as a tool for assessing the quality of food and identifying metabolic links in biological systems.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge