English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Phytochemistry

Isoflavonoids in non-leguminous taxa: a rarity or a rule?

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Oldrich Lapcík

Keywords

Abstract

Isoflavonoids are characteristic metabolites in legumes and an overwhelming number of reports concerning them come from the Leguminosae. Nevertheless, the spectrum of isoflavonoid producing taxa includes the representatives of four classes of multicellular plants, namely the Bryopsida, the Pinopsida, the Magnoliopsida and the Liliopsida. At least 59 non-leguminous families have been reported to produce isoflavones sensu lato; coumestans have been reported in 3 families, coumaronochromones in 3, pterocarpans in 9 and rotenoids in 8 families. Prenylated isoflavones have been found in 15 non-leguminous families and isoflavone dimers, heterodimers or oligomers in three families. More than two hundred different isoflavonoid aglycones have been reported in non-legumes altogether. The number of individual structures is even greater if the variety of glycosides are considered. Enzymology and genetics of isoflavonoid biosynthesis have been studied almost exclusively in legumes, with the exception of a few model plants (i.e. Beta vulgaris, Arabidopsis thaliana, Nicotiana tabacum and Zea mays). The key step at the very beginning of the isoflavonoid metabolic pathway is the oxidation of flavanone connected with the migration of aryl moiety from C2 to C3 mediated by a CYP450 enzyme isoflavone synthase (IFS), which has been identified and cloned in multiple legumes and in sugar beet (Beta vulgaris, Chenopodiaceae). No information is available about the enzyme(s) responsible for the biosynthesis of isoflavonoid core in other taxa. Experimental data demonstrates the capability of numerous enzymes of non-legume origin to metabolize isoflavones as alternative substrates to other phenolics.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge