English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 1990-Mar

Isolation and studies of the mutagenic activity in the Ames test of flavonoids naturally occurring in medical herbs.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
H Czeczot
B Tudek
J Kusztelak
T Szymczyk
B Dobrowolska
G Glinkowska
J Malinowski
H Strzelecka

Keywords

Abstract

Quercetin, rhamnetin, isohamnetin, apigenin and luteolin were isolated from medicinal herbs: Erigeron canadensis L., Anthyllis vulneraria L. and Pyrola chloranta L. The mutagenicity of these naturally occurring flavonoids was tested by the Ames method with S. typhimurium strains TA1535, TA1538, TA97, TA98, TA100 and TA102 in the presence and absence of metabolic activation. Of the above flavonoids only quercetin and rhamnetin revealed mutagenic activity in the Ames test. Quercetin induced point mutations in strains TA97, TA98, TA100 and TA102 of S. typhimurium. The presence of S9 rat liver microsome fraction markedly enhanced the mutagenic activity of quercetin in these strains. Rhamnetin appeared to be a much weaker mutagen in the Ames test. The compound induced mutations in strains TA97, TA98 and TA100 of S. typhimurium but only in the presence of metabolic activation. Comparison of the structure of the studied flavonoids with their mutagenic activity indicates that the mutagenicity of flavonoids is dependent on the presence of hydroxyl groups in the 3' and 4' positions of the B ring, and that the presence of a free hydroxy or methoxy group in the 7 position of the A ring also probably contributes to the appearance of mutagenic activity of flavonoids in the Ames test. It also appeared that the presence of methoxy groups, particularly in the B ring of the flavonoid molecule, markedly decreases the mutagenic activity of the compound.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge