English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Applied Microbiology 2010-May

Isolation, identification and characterization of soil microbes which degrade phenolic allelochemicals.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Z-Y Zhang
L-P Pan
H-H Li

Keywords

Abstract

OBJECTIVE

To isolate and characterize microbes in the soils containing high contents of phenolics and to dissolve the allelopathic inhibition of plants through microbial degradation.

RESULTS

Four microbes were isolated from plant soils using a screening medium containing p-coumaric acid as sole carbon source. The isolates were identified by biochemical analysis and sequences of their 16S or 18S rDNA, and designated as Pseudomonas putida 4CD1 from rice (Oryza sativa) soil, Ps. putida 4CD3 from pine (Pinus massoniana) soil, Pseudomonas nitroreducens 4CD2 and Rhodotorula glutinis 4CD4 from bamboo (Bambusa chungii) soil. All isolates degraded 1 g l(-1) of p-coumaric acid by 70-93% in inorganic and by 99% in Luria-Bertani solutions within 48 h. They also effectively degraded ferulic acid, p-hydroxybenzoic acid and p-hydroxybenzaldehyde. The microbes can degrade p-coumaric acid and reverse its inhibition on seed germination and seedling growth in culture solutions and soils. Low pHs inhibited the growth and phenolic degradation of the three bacteria. High temperature inhibited the R. glutinis. Co(2+) completely inhibited the three bacteria, but not the R. glutinis. Cu(2+), Al(3+), Zn(2+), Fe(3+), Mn(2+), Mg(2+) and Ca(2+) had varying degrees of inhibition for each of the bacteria.

CONCLUSIONS

Phenolics in plant culture solutions and soils can be decomposed through application of soil microbes in laboratory or controlled conditions. However, modification of growth conditions is more important for acidic and ions-contaminated media.

CONCLUSIONS

The four microbes were first isolated and characterized from the soils of bamboo, rice or pine. This study provides some evidence and methods for microbial control of phenolic allelochemicals.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge