English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 2013-Aug

Isolation of (-)-olivil-9'-O-β-d-glucopyranoside from Sambucus williamsii and its antifungal effects with membrane-disruptive action.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hyemin Choi
Juneyoung Lee
Young Su Chang
Eun-Rhan Woo
Dong Gun Lee

Keywords

Abstract

In this study, we isolated (-)-olivil-9'-O-β-d-glucopyranoside (OLI9G), a phytochemical from the stem bark of Sambucus williamsii, and investigated the antifungal mechanism of OLI9G against Candida albicans. First of all, the antifungal susceptibility testing and hemolysis assay showed that OLI9G exerted a potent activity without hemolysis compared to the activity of amphotericin B. To investigate the mechanism of action of OLI9G, we first examined membrane depolarization using cyanine dye, 3,3'-dipropylthiacarbocyanine iodide (diSC35). The results showed that OLI9G significantly changed the fungal membrane potential. To further understand this activity on the membrane, we did the propidium iodide (PI) influx assay. From the results, OLI9G caused membrane permeabilization in the fungal membrane, and the three dimensional (3D) flow cytometric contour plot from the PI influx assay further showed that the cells had shrunk due to the membrane damage. Finally, the membrane-active mechanism of OLI9G was confirmed by synthesizing a model membrane, calcein-encapsulating large unilamellar vesicles (LUVs). The calcein leakage showed the membrane-disruptive effects caused by direct action of OLI9G. In conclusion, the current study suggests that OLI9G exerts its antifungal activity through a membrane-disruptive action.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge