English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Bioorganic and Medicinal Chemistry Letters 2017-03

Isoquinoline alkaloids from Coptis japonica stimulate the myoblast differentiation via p38 MAP-kinase and Akt signaling pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Heyjin Lee
Le Thi Tuong
Ji Hye Jeong
Sang-Jin Lee
Gyu-Un Bae
Jae-Ha Ryu

Keywords

Abstract

To overcome the muscle atrophy, such as cachexia and sarcopenia, we tried to find myogenic agents from medicinal plants. From myogenic extract of Coptis japonica, we purified six isoquinoline alkaloids and evaluated their effects on transactivation of myoD and MHC expression in C2C12 cells during differentiation process. Among obtained compounds, magnoflorine most efficiently enhanced the myoblast differentiation by activating the p38 MAP kinase and Akt pathway, and also increased the number of multinucleated and cylinder-shaped myotubes. These results propose that magnoflorine from Coptis japonica might be a promising lead compound for the development of anti-muscle atrophy drug.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge