English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Life Sciences 2019-Apr

Isorhynchophylline exerts anti-inflammatory and anti-oxidative activities in LPS-stimulated murine alveolar macrophages.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Zheng Zhou
Yanhe Su
Xian-En Fa

Keywords

Abstract

Excessive inflammatory response and oxidative stress are considered as important pathogenic factors in the development of acute lung injury. Isorhynchophylline (IRN), a tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla, possesses anti-inflammatory and anti-oxidant activities. Our study aimed to investigate the effects and potential mechanisms of IRN on lipopolysaccharide (LPS)-stimulated murine alveolar macrophage cell lines MH-S and NR8383.CCK-8 assay was used to evaluate the cytotoxicity of IRN and LPS. Inflammatory response was assessed by detecting the mRNA expressions and release of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, and plasminogen activator inhibitor-1 (PAI-1) using qRT-PCR and ELISA. The expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were examined by qRT-PCR and western blot. Oxidative stress was evaluated by detecting malondialdehyde (MDA) level and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). The changes of the toll like receptor (TLR4)/nuclear factor-kappa B (NF-κB)/nod-like receptor protein 3 (NLRP3) inflammasome pathway was detected by western blot.Treatment with LPS or IRN for 24 h showed no cytotoxicity on MH-S and NR8383 cells. IRN pretreatment inhibited LPS-induced production of inflammatory cytokines, expressions of iNOS and COX-2, and oxidative stress in murine alveolar macrophages. Additionally, IRN inhibited LPS-induced activation of TLR4/NF-κB/NLRP3 inflammasome pathway in MH-S cells. Mechanistically, inhibition of TLR4/NF-κB/NLRP3 inflammasome pathway by si-TLR4 suppressed LPS-induced inflammation and oxidative stress in murine alveolar macrophages.IRN exerted anti-inflammatory and anti-oxidant effects on LPS-stimulated murine alveolar macrophages via inhibition of the TLR4/NF-κB/NLRP3 inflammasome pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge