English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental Physiology 2005-May

Kallikrein-kinin in stroke, cardiovascular and renal disease.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Julie Chao
Lee Chao

Keywords

Abstract

Tissue kallikrein, a serine proteinase, produces the potent vasodilator kinin peptide from kininogen substrate. The levels of tissue kallikrein are reduced in humans and animal models with hypertension, cardiovascular and renal disease. Using transgenic and somatic gene transfer approaches, we investigated the role of the tissue kallikrein-kinin system in cardiovascular, renal and central nervous systems. A single injection of the human tissue kallikrein gene in plasmid DNA or an adenoviral vector resulted in a prolonged reduction of blood pressure and attenuation of hypertrophy and fibrosis in the heart and kidney of several hypertensive animal models. Furthermore, enhanced kallikrein-kinin levels after gene transfer exerted beneficial effects, with protection against cardiac remodelling, renal injuries, restenosis, cerebral infarction and neurological deficits in normotensive animal models without haemodynamic effects, indicating direct actions of kallikrein independent of its ability to lower blood pressure. The effects of kallikrein were mediated by the kinin B2 receptor, as the specific B2 receptor antagonist icatibant abolished the actions of kallikrein. Moreover, kallikrein-kinin exhibited pleiotropic effects by inhibiting apoptosis, inflammation, hypertrophy and fibrosis, and promoting angiogenesis and neurogenesis in the heart, kidney, brain and blood vessel. Exogenous administration of kallikrein also led to increased nitric oxide (NO)/cGMP and cAMP levels, and reduced NAD(P)H oxidase activities, superoxide formation and pro-inflammatory cytokine levels. These results indicate a novel role of kallikrein-kinin through the kinin B2 receptor as an antioxidant and anti-inflammatory agent in protection against stroke, cardiovascular and renal disease, and may uncover new drug targets for the prevention and treatment of heart failure, vascular injury, end-stage renal disease and stroke in humans.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge