English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
mBio 2015-Jun

Kaposi Sarcoma Herpesvirus Induces HO-1 during De Novo Infection of Endothelial Cells via Viral miRNA-Dependent and -Independent Mechanisms.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Sara Botto
Jennifer E Totonchy
Jean K Gustin
Ashlee V Moses

Keywords

Abstract

Kaposi sarcoma (KS) herpesvirus (KSHV) infection of endothelial cells (EC) is associated with strong induction of heme oxygenase-1 (HO-1), a stress-inducible host gene that encodes the rate-limiting enzyme responsible for heme catabolism. KS is an angioproliferative tumor characterized by the proliferation of KSHV-infected spindle cells, and HO-1 is highly expressed in such cells. HO-1 converts the pro-oxidant, proinflammatory heme molecule into metabolites with antioxidant, anti-inflammatory, and proliferative activities. Previously published work has shown that KSHV-infected EC in vitro proliferate in response to free heme in a HO-1-dependent manner, thus implicating virus-enhanced HO-1 activity in KS tumorigenesis. The present study investigated the molecular mechanisms underlying KSHV induction of HO-1 in lymphatic EC (LEC), which are the likely spindle cell precursors. In a time course analysis of KSHV-infected cells, HO-1 expression displays biphasic kinetics characterized by an early transient induction that is followed by a more sustained upregulation coincident with the establishment of viral latency. A viral microRNA miR-K12-11 deletion mutant of KSHV was found to be defective for induction of HO-1 during latency. A potential mechanism for this phenotype was provided by BACH1, a cellular HO-1 transcriptional repressor targeted by miR-K12-11. In fact, in KSHV-infected LEC, the BACH1 message level is reduced, BACH1 subcellular localization is altered, and miR-K12-11 mediates the inverse regulation of HO-1 and BACH1 during viral latency. Interestingly, the data indicate that neither miR-K12-11 nor de novo KSHV gene expression is required for the burst of HO-1 expression observed at early times postinfection, which suggests that additional virion components promote this phenotype.

OBJECTIVE

While the mechanisms underlying KSHV induction of HO-1 remain unknown, the cellular mechanisms that regulate HO-1 expression have been extensively investigated in the context of basal and pathophysiological states. The detoxifying action of HO-1 is critical for the protection of cells exposed to high heme levels. KS spindle cells are erythrophagocytic and contain erythrocyte ghosts. Erythrocyte degeneration leads to the localized release of heme, creating oxidative stress that may be further exacerbated by environmental or other cofactors. Our previous work showed that KSHV-infected cells proliferate in response to heme and that this occurs in a HO-1-dependent manner. We therefore hypothesize that KSHV induction of HO-1 contributes to KS tumor development via heme metabolism and propose that HO-1 be evaluated as a therapeutic target for KS. Our present work, which aimed to understand the mechanisms whereby KSHV induces HO-1, will be important for the design and implementation of such a strategy.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge