English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Antiviral Therapy 2012

Kinetic characterization of newly discovered inhibitors of various constructs of human T-cell leukemia virus-1 (HTLV-1) protease and their effect on HTLV-1-infected cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ahu Demir
Raphael M Oguariri
Andrew Magis
David A Ostrov
Tomozumi Imamichi
Ben M Dunn

Keywords

Abstract

BACKGROUND

Human T-cell leukemia virus-1 (HTLV-1) was the first identified human retrovirus and was shown to be associated with diseases such as adult T-cell leukemia lymphoma and tropical spastic paraparesis/HTLV-1 associated myelopathy. Retroviral proteases (PRs) are essential for viral replication by processing viral Gag and Gag-(Pro)-Pol polyproteins during maturation. Full-length HTLV-1 PR is 125 residues long; whether the C-terminal region is required for catalytic activity is still controversial. In this study, we characterized the effect of C-terminal amino acids of HTLV-1 PR for PR activity and examined the binding of compounds identified by in silico screening. One compound showed inhibition against the virus in infected cells.

METHODS

Truncated (116-, 121- and 122-residue) forms of HTLV-1 PR were prepared and proteins from expression of the genes were purified. In silico screening was performed by docking small molecules into the active site of HTLV-1 PR. The kinetic constants k(cat), K(m), k(cat)/K(m) and inhibition constants K(i) for inhibitors identified by the computational screening were determined. Western blot and ELISA analyses were used to determine the effect of the most potent PR inhibitors on HTLV-1 protein processing in infected cells.

RESULTS

The constructs showed similar catalytic efficiency constants (k(cat)/K(m)); thus HTLV-1 PR C-terminal amino acids are not essential for full activity. Computational screening revealed new PR inhibitors and some were shown to be inhibitory in enzyme assays. In HTLV-1-infected cells, one of the small molecules inhibited HTLV-1 gag cleavage and decreased the amount of HTLV-1 p19 produced in the cells.

CONCLUSIONS

We have identified an HTLV-1 PR inhibitor that is biologically functional. Inhibitor screening will continue to develop possible drugs for therapy of HTLV-1 infection.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge