English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiologia Plantarum 2009-Feb

Kinetics and substrate specificities of desulfo-glucosinolate sulfotransferases in Arabidopsis thaliana.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Marion Klein
Jutta Papenbrock

Keywords

Abstract

Sulfotransferases (SOTs) (EC 2.8.2.-) catalyze the transfer of a sulfate group from the cosubstrate 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to a hydroxyl group of different substrates. In Arabidopsis thaliana, three SOTs were identified to catalyze the last step of glucosinolate (Gl) core structure biosynthesis called AtSOT16, 17 and 18. These enzymes from Arabidopsis ecotype C24 were overexpressed in Escherichia coli and purified by affinity chromatography. Recombinant proteins were used to determine substrate specificities to investigate whether each of the three desulfo (ds)-Gl SOTs might influence the Gl pattern of Arabidopsis differently. After optimization of the enzyme assay, it was possible to measure in vivo substrates with non-radioactive PAPS by HPLC analysis of the product. In vitro enzyme assays revealed a preference of AtSOT16 for the indolic ds-Gl indol-3-yl-methyl, AtSOT17 showed an increased specific activity with increasing chain length of ds-Gl derived from methionine and AtSOT18 preferred the long-chain ds-Gl, 7-methylthioheptyl and 8-methylthiooctyl, derived from methionine. In planta ds-Gl exist side by side; therefore, initial results from one substrate measurements were verified using a defined mixture of ds-Gl and ds-Gl/Gl leaf extracts from Arabidopsis ecotype C24. These studies confirmed the one substrate measurements. To compare SOTs from different Arabidopsis ecotypes, additionally, AtSOT18* from ecotype Col-0 was overexpressed in E. coli and purified. The recombinant protein was used for in vitro measurements and revealed a different enzymatical behavior compared with AtSOT18 from C24. In conclusion, there are differences in the substrate specificities between the three ds-Gl AtSOT proteins within ecotype C24 and differences among ds-Gl AtSOT18 proteins from different ecotypes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge