English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cell Biology and Toxicology 2017-Jun

Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Parthasarathy Arumugam
Annie Samson
Jieun Ki
Joon Myong Song

Keywords

Abstract

The existence of a well-established drug resistance mechanism in cancer stem cells (CSC) complicates the cancer treatment. Clusterin (CLU) plays a key role in maintaining the integrity of endoplasmic reticulum (ER) during drug-induced stress. Hence, silencing the CLU could significantly reduce the inherent drug resistance mechanism of CSC. The combination of drug-induced cytotoxicity, as well as the suppression of drug resistance in CSC, could circumvent the recurrence capability of the tumor. In the present study, camptothecin (CPT)-induced apoptosis and necrosis in CSC with and without siCLU treatment were simultaneously measured using Qdot-based total internal reflection fluorescence microscope (TIRF). In addition, to elucidate the mechanism of CPT-induced cytotoxicity in CLU-suppressed CSC, expression of Bcl-2, Bax, Bak, and PARP and mitochondrial permeability transition pore (MPTP) were studied. EC50 values of CPT-induced apoptosis and necrosis were significantly reduced (p < 0.01) in CLU-suppressed MCF-7 and CSC. Significantly increased MPTP (p < 0.001) and cytosolic Ca2+ (p < 0.001) were observed in CPT-treated CLU-suppressed CSC as compared to the normal CSC. Elevated expression of Bax, Bak, and cleaved PARP and reduced expression of Bcl-2 and cytosolic ATP were observed in CPT-treated CLU-suppressed CSC. Observed results indicate that silencing the expression of CLU could improve the anticancer efficacy of CPT at 128.4-nM concentration by equally inducing necrotic signals along with apoptosis. Furthermore, the developed high content TIRF assay based on the CLU-suppressed CSC could be an ideal and beneficial tool for rapidly analyzing the cytotoxicity of anti-cancer agents.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge