English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular and Cellular Biochemistry 2001-May

L-leucine transport in rat heart under normal conditions and effects of a simulated hypoxia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
N King
M S Suleiman

Keywords

Abstract

L-leucine plays a central role in the regulation of protein metabolism in heart and has been implicated in myocardial protection, but little is known about the relationship between these phenomena and leucine transport across the cardiac sarcolemma. In this study we used sarcolemmal vesicles and ventricular myocytes isolated from rat heart to characterise L-leucine transport under normal conditions and to investigate the effect of simulated hypoxia or inhibition of protein synthesis. The Km and Vmax of leucine uptake were 5.24+/-0.65 mM and 1.43+/-1.84 nmol min(-1) mg(-1) protein in vesicles compared to 2.17+/-0.13 mM and 1.7+/-0.76 nmol min(-1) microl(-1) intracellular space in cells. Transport was not dependent on Na+ or H+ gradients. In vesicles L-leucine uptake was increased by trans-stimulation, whilst inhibition was observed with classical system L substrates including 2-aminobicyclo[2,2,1]-heptane-2-carboxylic acid (BCH) suggesting that this system mediated L-leucine transport in heart. L-Leucine uptake into isolated cardiac myocytes was inhibited after 20, 30 and 60 min of simulated hypoxia. This was not caused by reduced cell viability, although the cells underwent a rigor contracture. Inhibition of protein synthesis did not affect L-leucine transport.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge