English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2016

Lack of H(+)-pyrophosphatase Prompts Developmental Damage in Arabidopsis Leaves on Ammonia-Free Culture Medium.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mayu Fukuda
Shoji Segami
Takaaki Tomoyama
Mariko Asaoka
Yoichi Nakanishi
Shizuka Gunji
Ali Ferjani
Masayoshi Maeshima

Keywords

Abstract

The plant vacuolar H(+)-pyrophosphatase (H(+)-PPase) functions as a proton pump coupled with the hydrolysis of pyrophosphate (PPi). Loss-of-function mutants (fugu5s and vhp1) of the H(+)-PPase of Arabidopsis thaliana show clear morphological phenotypes in the cotyledons, caused by inhibition of gluconeogenesis from seed storage lipids due to excessive accumulation of PPi. In this study, we investigated the phenotypes of the fugu5 and vhp1 mutants during vegetative growth under a specific nitrogen nutritional regime. When nitrate in the culture medium was the sole nitrogen source, growth of the mutant rosette leaves was severely compromised. Interestingly, trypan blue staining revealed notable cell death at the leaf blade-petiole junctions of young leaves, a region known to have meristematic features. Physical contact of the leaf tip with the culture medium also triggered leaf atrophy, suggesting that absorption of some elements through the hydathodes was probably involved in this phenotype. Prevention of such leaf-medium contact resulted in a marked decrease in phosphate content in the shoots, and suppressed leaf atrophy. Furthermore, fugu5 necrotic symptoms were rescued completely by heterologous expression of yeast cytosolic soluble pyrophosphatase IPP1 or uncoupling-type H(+)-PPases that retained only PPi-hydrolysis activity, indicating that the damage of actively proliferating cells was caused by the loss of the PPi-hydrolyzing function of H(+)-PPase. Importantly, cell death and growth defects of the fugu5 leaves were suppressed completely by the simple addition of ammonium (>1 mM) to the culture medium. The PPi content in the shoots of fugu5 grown on ammonium-free medium was 70% higher than that of the wild type, and PPi levels were restored to normal upon growth on ammonium-supplemented medium. Together, these findings suggest that the PPi-hydrolyzing activity of H(+)-PPase is essential to maintain the PPi contents at optimal levels when grown on ammonium-free culture medium, and any direct contact of the leaves with the culture medium may raise PPi levels in the leaves through increased phosphate uptake.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge