English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
PLoS ONE 2013

Lack of RsmA-mediated control results in constant hypervirulence, cell elongation, and hyperflagellation in Pectobacterium wasabiae.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Viia Kõiv
Liis Andresen
Martin Broberg
Jekaterina Frolova
Panu Somervuo
Petri Auvinen
Minna Pirhonen
Tanel Tenson
Andres Mäe

Keywords

Abstract

The posttranscriptional regulator RsmA controls the production of plant cell wall degrading enzymes (PCWDE) and cell motility in the Pectobacterium genus of plant pathogens. In this study the physiological role of gene regulation by RsmA is under investigation. Disruption of rsmA gene of the Pectobacterium wasabiae strain, SCC3193 resulted in 3-fold decrease in growth rate and increased virulence. The comparison of mRNA levels of the rsmA(-) mutant and wild-type using a genome-wide microarray showed, that genes responsible for successful infection, i.e. virulence factors, motility, butanediol fermentation, various secretion systems etc. were up-regulated in the rsmA(-) strain. The rsmA(-) strain exhibited a higher propensity to swarm and produce PCWDE compared to the wild-type strain. Virulence experiments in potato tubers demonstrated that in spite of its more efficient tissue maceration, the rsmA(-) strain's ability to survive within the host is reduced and the infection site is taken over by resident bacteria. Taken together, in the absence of RsmA, cells revert to a constitutively infective phenotype characterized by expression of virulence factors and swarming. We hypothesize that lack of control over these costly energetic processes results in decreased growth rate and fitness. In addition, our findings suggest a relationship between swarming and virulence in plant pathogens.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge