English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Biology and Medicine 2018-Oct

β-Lapachone and its iodine derivatives cause cell cycle arrest at G2/M phase and reactive oxygen species-mediated apoptosis in human oral squamous cell carcinoma cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Rosane Borges Dias
Taís Bacelar Sacramento de Araújo
Raíza Dias de Freitas
Ana Carolina Borges da Cruz Rodrigues
Letícia Palmeira Sousa
Caroline Brandi Schlaepfer Sales
Ludmila de Faro Valverde
Milena Botelho Pereira Soares
Mitermayer Galvão Dos Reis
Ricardo Della Coletta

Keywords

Abstract

β-Lapachone is a natural naphthoquinone originally obtained from the bark of the purple Ipe (Tabebuia avellanedae Lor, Bignoniaceae) and its therapeutic potential in human cancer cells has been evaluated in several studies. In this study, we examined the effects of β-lapachone and its 3-iodine derivatives (3-I-α-lapachone and 3-I-β-lapachone) on cell proliferation, cell death, and cancer-related gene expression in human oral squamous cell carcinoma cells. β-Lapachone and its 3-iodine derivatives showed potent cytotoxicity against different types of human cancer cell lines. Indeed, treatment with these compounds induced cell cycle arrest at G2/M phase, followed by internucleosomal DNA fragmentation, and caused significant increases in phosphatidylserine externalization, caspase-8 and -9 activation, mitochondrial membrane depolarization, reactive oxygen species (ROS) production, and apoptotic cell death morphology. The apoptosis induced by the compounds was prevented by pretreatment with a pan-caspase inhibitor (Z-VAD-FMK) and an antioxidant (N-acetyl-l-cysteine). In vivo, β-lapachone and its 3-iodine derivatives significantly reduced tumor burden and did not alter any of the biochemical, hematological, or histological parameters of the animals. Overall, β-lapachone and its 3-iodine derivatives showed promising cytotoxic activity due to their ability to induce cell cycle arrest at G2/M phase and promote caspase- and ROS-mediated apoptosis. In addition, β-lapachone and its 3-iodine derivatives were able to suppress tumor growth in vivo, indicating that these compounds may be new antitumor drug candidates.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge