English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Human Mutation 2011-Dec

Large deletions of the KCNV2 gene are common in patients with cone dystrophy with supernormal rod response.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bernd Wissinger
Simone Schaich
Britta Baumann
Michael Bonin
Herbert Jägle
Christoph Friedburg
Balázs Varsányi
Carel B Hoyng
Hélène Dollfus
John R Heckenlively

Keywords

Abstract

Cone dystrophy with supernormal rod response (CDSRR) is considered to be a very rare autosomal recessive retinal disorder. CDSRR is associated with mutations in KCNV2, a gene that encodes a modulatory subunit (Kv8.2) of a voltage-gated potassium channel. In this study, we found that KCNV2 mutations are present in a substantial fraction (2.2-4.3%) of a sample of 367 independent patients with a variety of initial clinical diagnoses of cone malfunction, indicating that CDSRR is underdiagnosed and more common than previously thought. In total, we identified 20 different KCNV2 mutations; 15 of them are novel. A new finding of this study is the substantial proportion of large deletions at the KCNV2 locus that accounts for 15.5% of the mutant alleles in our sample. We determined the breakpoints and size of all five different deletions, which ranged between 10.9 and 236.8 kb. Two deletions encompass the entire KCNV2 gene and one also includes the adjacent VLDLR gene. Furthermore, we investigated N-terminal amino acid substitution mutations for its effect on interaction with Kv2.1 using yeast two-hybrid technology. We found that these mutations dramatically reduce or abolish this interaction suggesting a lack of assembly of heteromeric Kv channels as one underlying pathomechanism of CDSRR.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge