English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2017-Dec

Leaf defense system of Robinia pseudoacacia L. seedlings exposed to 3years of elevated atmospheric CO2 and Cd-contaminated soils.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
X Jia
Y H Zhao
T Liu
Y H He

Keywords

Abstract

Short-term exposure to elevated CO2 increases cadmium (Cd) uptake in some plant species (wheat, poplars, and willows), which triggers an increase in antioxidative system activity to deal with additional reactive oxygen species that are generated. Here, we examined leaf defenses in Robinia pseudoacacia L. seedlings exposed to elevated CO2+Cd for 3years. Three years of elevated CO2 decreased Cd uptake into leaves and the Cd content in soils and increased the pH of rhizosphere soil relative to ambient CO2. In plants exposed to Cd stress, leaf chlorophyll content was greater under elevated CO2 than under ambient CO2. Superoxide dismutase, peroxidase, and catalase activity increased, glutathione content increased, and malondialdehyde and phytochelatins contents decreased under elevated CO2+Cd relative to Cd alone. Proline, soluble sugars, flavonoids, saponins, and phenolic acids contents were greater under elevated CO2+Cd than under Cd alone, and condensed tannin content was lower. Overall, long-term elevation of CO2 enhanced the leaf defense system of R. pseudoacacia exposed to Cd by stimulating antioxidant enzyme activity, osmotic adjustment, and the production of glutathione, flavonoids and phenolic acids. Future research should focus on understanding the mechanisms involved in the decrease in Cd uptake into leaves and Cd content in soils and the increase in rhizosphere soil pH under long-term exposure to elevated CO2.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge