English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Cellular Biochemistry 2018-Dec

Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ha-Na Oh
Ji-Hye Seo
Mee-Hyun Lee
Cheolhee Kim
Eunae Kim
Goo Yoon
Seung-Sik Cho
Young Sik Cho
Hyun Woo Choi
Jung-Hyun Shim

Keywords

Abstract

Oral cancer is of an aggressive malignancy that arises on oral cavity and lip, 90% of cancers histologically originated in the squamous cells. Licochalcone (LC)C has been known as natural phenolic chalconoid substances, and its origin is the root of Glycyrrhiza glabra or Glycyrrhiza inflata. LCC inhibited oral squamous cell carcinoma (OSCC) cell viability, mitochondrial function, and anchorage-independent growth in a dose-dependent manner. To investigate the ability of LCC to target Janus kinase 2 (JAK2), we performed pull-down binding assay, kinase assay, and docking simulation. The molecular docking studies were performed between JAK2 and the potent inhibitor LCC. It was shown that LCC tightly interacted with ATP-binding site of JAK2. In addition, LCC inhibited the JAK2/signal transducer and activator of transcription 3 pathway, upregulated p21, and downregulated Bcl-2, Mcl-1, and Survivin, while it disrupted mitochondrial membrane potential and subsequently caused cytochrome c release with activation of multi-caspase, eventually leading to apoptosis in HN22 and HSC4 cells. LCC elevated the protein levels of Bax, cleaved Bid and PARP, and increased Apaf-1, and this effect was reversed by LCC treatment. Our results demonstrated that treatment of OSCC cells with LCC induced the death receptor (DR)4 and DR5 expression level with the generation of reactive oxygen species and the upregulation of CHOP protein expression. Taken together, these results could provide the basis for clinical application as a new therapeutic strategy in the treatment of oral cancer.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge