English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Current Medicinal Chemistry 2006

Ligands for A2B adenosine receptor subtype.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Pier Giovanni Baraldi
Romeo Romagnoli
Delia Preti
Francesca Fruttarolo
Maria Dora Carrion
Mojgan Aghazadeh Tabrizi

Keywords

Abstract

Adenosine is a naturally occurring nucleoside, which exerts its biological effects by interacting with a family of adenosine receptors known as A(1), A(2A), A(2B), and A(3). The A(2B) subtype is a low affinity receptor, which couples to stimulation of adenylyl cyclase and also leads to a rise in intracellular calcium modulating important physiological processes. Adenosine exhibiting activity at this subtype is at concentrations greater than 10 microM. The A(2B) receptors show a ubiquitous distributions, the highest levels are present in cecum, colon and bladder, followed by blood vessels, mast cells and lung. Through A(2B) receptors, adenosine also regulates the growth of smooth muscle cell populations in blood vessels, cell growth, intestinal function, inhibition of Tumor Necrosis Factor (TNF-alpha), vascular tone, and inflammatory processes such as diarrhea and asthma. Potent and selective adenosine agonists are the result of modifications of the parent ligand adenosine by substitution, namely at N(6) or C(2) position of the purine heterocycle or at the 5' position of the ribose moiety. 5'-N-ethylcarboxamidoadenosina (NECA) is one of the most potent A(2B) adenosine receptor agonist. Classical antagonists for A(2B) adenosine receptors are xanthine analogues obtained from multiple substitutions of the parent heterocycle by C(8) substitution combined with N(1) and N(3) (and sometimes N(7)) substitutions.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge