English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomechanics and Modeling in Mechanobiology 2019-Jun

Linking microvascular collapse to tissue hypoxia in a multiscale model of pressure ulcer initiation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Vivek Sree
Manuel Rausch
Adrian Tepole

Keywords

Abstract

Pressure ulcers are devastating injuries that disproportionately affect the older adult population. The initiating factor of pressure ulcers is local ischemia, or lack of perfusion at the microvascular level, following tissue compression against bony prominences. In turn, lack of blood flow leads to a drop in oxygen concentration, i.e, hypoxia, that ultimately leads to cell death, tissue necrosis, and disruption of tissue continuity. Despite our qualitative understanding of the initiating mechanisms of pressure ulcers, we are lacking quantitative knowledge of the relationship between applied pressure, skin mechanical properties as well as structure, and tissue hypoxia. This gap in our understanding is, at least in part, due to the limitations of current imaging technologies that cannot simultaneously image the microvascular architecture, while quantifying tissue deformation. We overcome this limitation in our work by combining realistic microvascular geometries with appropriate mechanical constitutive models into a microscale finite element model of the skin. By solving boundary value problems on a representative volume element via the finite element method, we can predict blood volume fractions in response to physiological skin loading conditions (i.e., shear and compression). We then use blood volume fraction as a homogenized variable to couple tissue-level skin mechanics to an oxygen diffusion model. With our model, we find that moderate levels of pressure applied to the outer skin surface lead to oxygen concentration contours indicative of tissue hypoxia. For instance, we show that applying a pressure of 60 kPa at the skin surface leads to a decrease in oxygen partial pressure from a physiological value of 65 mmHg to a hypoxic level of 31 mmHg. Additionally, we explore the sensitivity of local oxygen concentration to skin thickness and tissue stiffness, two age-related skin parameters. We find that, for a given pressure, oxygen concentration decreases with decreasing skin thickness and skin stiffness. Future work will include rigorous calibration and validation of this model, which may render our work an important tool toward developing better prevention and treatment tools for pressure ulcers specifically targeted toward the older adult patient population.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge