English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Agricultural and Food Chemistry 2018-Oct

Lipid-Lowering Effects of Medium-Chain Triglyceride-Enriched Coconut Oil in Combination with Licorice Extracts in Experimental Hyperlipidemic Mice.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Eun-Jung Lee
Hyeongjoo Oh
Beom Goo Kang
Min-Kyung Kang
Dong Yeon Kim
Yun-Ho Kim
Jeong Yeol Lee
Joung Gun Ji
Soon Sung Lim
Young-Hee Kang

Keywords

Abstract

Coconut oil has gained in popularity over recent years as a healthy oil due to its potential cardiovascular benefits. Coconut oil contains medium chain triglycerides (MCT) including lauric acid and capric acid that display beneficial properties in human health. Licorice ( Glycyrrhiza uralensis) is used as a sweetener and in traditional Chinese medicine with anti-inflammatory, antimicrobial, and antioxidant activities. This study investigated the in vivo effects of medium chain-triglycerides (MCT)-coconut oil (MCO) and its combination with licorice extract (LE-MCO) on serum lipid profile, hepatic steatosis, and local fat pad proteins in diet-induced obese mice. No liver toxicity was observed in 45% fat diet (HFD)-fed mice orally treated with LE, MCO, and LE-MCO for 12 weeks. Their supplementation reduced HFD-enhanced body weight, blood glucose, and insulin in mice. Plasma levels of both PLTP and LCAT were boosted in LE-MCO-administered mice. Supplementation of LE-MCO diminished plasma levels of TG and TC with concomitant reduction of the LDL-C level and tended to raise blood HDL-C level compared to that of HFD alone-mice. Treatment of LE-MCO encumbered the hepatic induction of hepatosteatosis-related proteins of SREBP2, SREBP1c, FAS, ACC, and CD36 in HFD-fed mice. Substantial suppression of this induction was also observed in the liver of mice treated with MCO. Oral administration of LE-MCO to HFD mice boosted hepatic activation of AMPK and the induction of UCP-1 and FATP1 in brown fat. Conversely, LE-MCO disturbed hepatic PPAR-LXR-RXR signaling in HFD-fed animals and reversed HFD-elevated epididymal PPARγ. Collectively, oral administration of LE-MCO may impede hyperlipidemia and hepatosteatosis through curtailing hepatic lipid synthesis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge