English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 2011-Jun

Lipid peroxidation modification of protein generates Nepsilon-(4-oxononanoyl)lysine as a pro-inflammatory ligand.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Takahiro Shibata
Yuuki Shimozu
Chika Wakita
Noriyuki Shibata
Makio Kobayashi
Sachiko Machida
Rina Kato
Hiroyuki Itabe
Xiaochun Zhu
Lawrence M Sayre

Keywords

Abstract

4-Oxo-2(E)-nonenal (ONE), a peroxidation product of ω-6 polyunsaturated fatty acids, covalently reacts with lysine residues to generate a 4-ketoamide-type ONE-lysine adduct, N(ε)-(4-oxononanoyl)lysine (ONL). Using an ONL-coupled protein as the immunogen, we raised the monoclonal antibody (mAb) 9K3 directed to the ONL and conclusively demonstrated that the ONL was produced during the oxidative modification of a low density lipoprotein (LDL) in vitro. In addition, we observed that the ONL was present in atherosclerotic lesions, in which an intense immunoreactivity was mainly localized in the vascular endothelial cells and macrophage- and vascular smooth muscle cell-derived foam cells. Using liquid chromatography with on-line electrospray ionization tandem mass spectrometry, we also established a highly sensitive method for quantification of the ONL and confirmed that the ONL was indeed formed during the lipid peroxidation-mediated modification of protein in vitro and in vivo. To evaluate the biological implications for ONL formation, we examined the recognition of ONL by the scavenger receptor lectin-like oxidized LDL receptor-1 (LOX-1). Using CHO cells stably expressing LOX-1, we evaluated the ability of ONL to compete with the acetylated LDL and found that both the ONE-modified and ONL-coupled proteins inhibited the binding and uptake of the modified LDL. In addition, we demonstrated that the ONL-coupled protein was incorporated into differentiated THP-1 cells via LOX-1. Finally, we examined the effect of ONL on the expression of the inflammation-associated gene in THP-1 and observed that the ONL-coupled proteins significantly induced the expression of atherogenesis-related genes, such as the monocyte chemoattractant protein-1 and tumor necrosis factor-α, in a LOX-1-dependent manner. Thus, ONL was identified to be a potential endogenous ligand for LOX-1.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge