English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemico-Biological Interactions 2017-Jan

Liqustri lucidi Fructus inhibits hepatic injury and functions as an antioxidant by activation of AMP-activated protein kinase in vivo and in vitro.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hye Lim Seo
Su Youn Baek
Eun Hye Lee
Ju-Hee Lee
Seul-Gi Lee
Kwang-Youn Kim
Mi Hee Jang
Min-Hui Park
Joung-Hee Kim
Keuk-Jun Kim

Keywords

Abstract

Medicinal herbs are used to treat or prevent various diseases, and function to regulate protective mechanisms as nutraceuticals. Fructus Ligustri lucidi is the fruit of Ligustrum lucidum and has been used for its tonic effects on the liver. This study was designed to examine the effects of Fructus Ligustri lucidi water extract (FLL) against severe oxidative stress and mitochondrial impairment in vivo and in vitro and to elucidate its cellular mechanisms of action. Treatment of HepG2 cells with arachidonic acid (AA) + iron successfully induced oxidative stress and apoptosis, as indicated by depletion of glutathione, formation of ROS, decreses in mitochondrial membrane potential (Δψm), and altered expression of apoptosis-related proteins, such as procaspase-3 and Bcl-xL. FLL treatment significantly blocked these pathological changes and the mitochondrial dysfunction caused by AA + iron, which were similar with the effect of aminoimidazole-carboxamide-β-d-ribofuranoside (AICAR). Moreover, FLL induced the activation of AMP-activated protein kinase (AMPK), which was mediated by its upstream kinase LKB1. Inhibition or activation of AMPK revealed the role of AMPK in cellular protection conferred by FLL in LKB1-deficient cells. In mice, oral administration of 100 mg/kg FLL activated AMPK in the liver, and protected against oxidative stress and liver injury induced by CCl4 injection. Among the components of FLL, chlorogenic acid was found to be responsible for the protection of hepatocytes against AA + iron-induced cellular damage. Overall, our results confirmed that FLL has the ability to protect hepatocytes against oxidative injury through regulation of the AMPK signaling pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge