English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Dental Research 1999-Oct

Localization and changes in NADPH-diaphorase reactivity and nitric oxide synthase immunoreactivity in rat pulp following tooth preparation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A S Law
K R Baumgardner
S T Meller
G F Gebhart

Keywords

Abstract

Inflammatory changes in the dental pulp are accompanied by release of a wide variety of chemical mediators. Nitric oxide, an oxidative free radical produced by the enzyme nitric oxide synthase (NOS), has been implicated in multiple inflammatory processes, which makes it a suitable marker for changes which likely occur following tooth pulp insult. Since limited information on nitric oxide in the pulp is available, it is necessary first to examine relative distributions of NOS in uninflamed and inflamed rat pulp. We accomplished this by characterizing regions of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) activity and the distribution of both macrophage NOS (macNOS) and neuronal NOS (nNOS) immunoreactivity in normal and inflamed rat molar pulp at multiple time points. The results showed that: (1) deep cavity preparation on the mesial surface of the molar produced a time-dependent inflammation, with acute inflammation early progressing to chronic, granulomatous inflammation with necrosis later that spread preferentially down the mesial root; (2) control (non-prepared) teeth showed a relatively faint and homogeneous distribution of NADPH-d and macNOS reactivity but no discernible nNOS reactivity; (3) inflamed teeth displayed localized increased intensity of NADPH-d and macNOS reactivity surrounding the inflamed area of pulp, but no increased nNOS activity; (4) pulp vessels supplying the inflamed area showed increased NADPH-d reactivity, but no increased macNOS or nNOS reactivity; and (5) neither NADPH-d, macNOS, nor nNOS reactivity was observed in pulpal nerves. Therefore, nitric oxide may mediate the pulpal inflammatory response through its effects on the paralesional pulp tissue and surrounding endothelial/vascular structures.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge