English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analytical Biochemistry 2008-Dec

Localization of 13 one-helix integral membrane proteins in photosystem II subcomplexes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bernhard Granvogl
Mikael Zoryan
Matthias Plöscher
Lutz Andreas Eichacker

Keywords

Abstract

Photosystem II is a multimeric protein complex of the thylakoid membrane in chloroplasts. Approximately half of the at least 26 different integral membrane protein subunits have molecular masses lower than 10 kDa. After one-dimensional (1D) or two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) separation, followed by enzymatic digestion of detected proteins, hardly any of these low-molecular-weight (LMW) subunits are detectable. Therefore, we developed a method for the analysis of highly hydrophobic LMW proteins. Intact proteins are extracted from acrylamide gels using a mixture of formic acid and organic solvent, precipitated with acetone, and analyzed by "top-down" mass spectrometry (MS). After offline nanoESI (electrospray ionization) MS, all LMW one-helix proteins from photosystem II were detected. In the four detected photosystem II supercomplexes of Nicotiana tabacum wild-type plants, 11 different one-helix proteins were identified as PsbE, -F, -H, -I, -K, -L, -M, -Tc, -W, and two isoforms of PsbX. The proteins PsbJ, -Y1, and -Y2 were localized in the buffer front after blue native (BN) PAGE, indicating their release during solubilization. Assembled PsbW is detected exclusively in supercomplexes, whereas it is absent in photosystem II core complexes, corroborating the protein's function for assembly of the light-harvesting complexes. This approach will substantiate gel-blot immunoanalysis for localization and identification of LMW protein subunits in any membrane protein complex.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge