English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Biology and Medicine 2010-Sep

Long-lasting inhibition of presynaptic metabolism and neurotransmitter release by protein S-nitrosylation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Alena Rudkouskaya
Vasiliy Sim
Aabha A Shah
Paul J Feustel
David Jourd'heuil
Alexander A Mongin

Keywords

Abstract

Nitric oxide (NO) and related reactive nitrogen species (RNS) play a major role in the pathophysiology of stroke and other neurodegenerative diseases. One of the poorly understood consequences of stroke is a long-lasting inhibition of synaptic transmission. In this study, we tested the hypothesis that RNS can produce long-term inhibition of neurotransmitter release via S-nitrosylation of proteins in presynaptic nerve endings. We examined the effects of exogenous sources of RNS on the vesicular and nonvesicular L-[(3)H]glutamate release from rat brain synaptosomes. NO/RNS donors, such as spermine NONOate, MAHMA NONOate, S-nitroso-L-cysteine, and SIN-1, inhibited only the vesicular component of glutamate release with an order of potency that closely matched levels of protein S-nitrosylation. Inhibition of glutamate release persisted for >1h after RNS donor decomposition and washout and strongly correlated with decreases in the intrasynaptosomal ATP levels. Post-NO treatment of synaptosomes with thiol-reducing reagents decreased the total content of S-nitrosylated proteins but had little effect on glutamate release and ATP levels. In contrast, post-NO application of the end-product of glycolysis, pyruvate, partially rescued neurotransmitter release and ATP production. These data suggest that RNS suppress presynaptic metabolism and neurotransmitter release via poorly reversible modifications of glycolytic and mitochondrial enzymes, one of which was identified as glyceraldehyde-3-phosphate dehydrogenase. A similar mechanism may contribute to the long-term suppression of neuronal communication during nitrosative stress in vivo.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge