English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2013-Sep

Longer uncommon polyamines have a stronger defense gene-induction activity and a higher suppressing activity of Cucumber mosaic virus multiplication compared to that of spermine in Arabidopsis thaliana.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G H M Sagor
Taibo Liu
Hideki Takahashi
Masaru Niitsu
Thomas Berberich
Tomonobu Kusano

Keywords

Abstract

CONCLUSIONS

Our work suggests that long chain polyamines and their derivatives are potential chemicals to control viral pathogens for crop production. Previously we showed that two tetraamines, spermine (Spm) and thermospermine (T-Spm), induce the expression of a subset of defense-related genes and repress proliferation of Cucumber mosaic virus (CMV) in Arabidopsis. Here we tested whether the longer uncommon polyamines (LUPAs) such as caldopentamine, caldohexamine, homocaldopentamine and homocaldohexamine have such the activity. LUPAs had higher gene induction activity than Spm and T-Spm. Interestingly the genes induced by LUPAs could be classified into two groups: the one group was most responsive to caldohexamine while the other one was most responsive to homocaldopentamine. In both the cases, the inducing activity was dose-dependent. LUPAs caused local cell death and repressed CMV multiplication more efficiently as compared to Spm. LUPAs inhibited the viral multiplication of not only avirulent CMV but also of virulent CMV in a dose-dependent manner. Furthermore, LUPAs can activate the systemic acquired resistance against CMV more efficiently as compared to Spm. When Arabidopsis leaves were incubated with LUPAs, the putative polyamine oxidase (PAO)-mediated catabolites were detected even though the conversion rate was very low. In addition, we found that LUPAs induced the expression of three NADPH oxidase genes (rbohC, rbohE and rbohH) among ten isoforms. Taken together, we propose that LUPAs activate two alternative reactive oxygen species evoked pathways, a PAO-mediated one and an NADPH-oxidase-mediated one, which lead to induce defense-related genes and restrict CMV multiplication.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge