English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Pharmacology 2017

Lotus Leaf Aqueous Extract Reduces Visceral Fat Mass and Ameliorates Insulin Resistance in HFD-Induced Obese Rats by Regulating PPARγ2 Expression.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Kemin Yan
Huijuan Zhu
Jian Xu
Hui Pan
Naishi Li
Linjie Wang
Hongbo Yang
Meijuan Liu
FengYing Gong

Keywords

Abstract

Objectives: Lotus leaf is a kind of traditional Chinese medicine. We aimed to explore the effects of lotus leaf aqueous extract (LLAE) on peroxisome proliferative activated receptor γ2 (PPARγ2) expression in preadipocytes and adipocytes and further investigate its effects on high fat diet (HFD)-induced obese rats. Methods: pGL3-Enhancer-PPARγ2 (625 bp)-Luc plasmid, a luciferase reporter gene expression plasmid containing PPARγ2 promoter, was stably transfected into 3T3-L1 preadipocytes. PPARγ2 promoter activities were determined by assaying the luciferase activities. Then PPARγ2 promoter activities in preadipocytes and PPARγ2 mRNA levels in human subcutaneous adipocytes were measured after the administration with LLAE. Additionally, the effects of LLAE on body weight, fat mass, glucose and lipid metabolism and the expression of PPARγ2, insulin receptor substrate 1 and glucose transporter 4 (GLUT4) in visceral adipose tissue (VAT) were measured in HFD-induced obese rats treated with low or high dose [0.5 or 3.0 g crude drug/(kg.d)] LLAE for 6 weeks. Results: Ten μg/ml LLAE significantly increased the luciferase activities in 3T3-L1 cells and the stimulatory action reached 2.51 folds of controls when LLAE was 1000 μg/ml (P < 0.01). After treating 3T3-L1 cells with 100 μg/ml LLAE, the stimulatory role peaked at 32 h where it was 2.58 folds of controls (P < 0.01). Besides, 100 μg/ml LLAE significantly increased PPARγ2 mRNA levels in human adipocytes to 1.91 folds of controls (P < 0.01). In HFD-induced obese rats, administration with both low and high dose LLAE notably reduced visceral fat mass by 45.5 and 58.4%, respectively, and significantly decreased fasting serum insulin levels (P < 0.05). The high dose LLAE also significantly decreased homeostasis model assessment of insulin resistance in obese rats (P < 0.05). Furthermore, the mRNA levels of PPARγ2 and GLUT4 in VAT of obese rats were significantly increased when compared with control rats, and were notably suppressed by LLAE intervention for 6 weeks (P < 0.05). Conclusion: LLAE significantly reduces visceral fat mass and ameliorates insulin resistance in HFD-induced obese rats. These beneficial effects of LLAE may associate with its role in stimulating PPARγ2 expression in preadipocytes and subcutaneous adipocytes and suppressing PPARγ2 and GLUT4 expression in VAT.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge