English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Oral Biology 2017-Oct

Lupinifolin from Albizia myriophylla wood: A study on its antibacterial mechanisms against cariogenic Streptococcus mutans.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Surasak Limsuwan
Kotchakorn Moosigapong
Siriporn Jarukitsakul
Nantiya Joycharat
Sasitorn Chusri
Patcharawalai Jaisamut
Supayang Piyawan Voravuthikunchai

Keywords

Abstract

OBJECTIVE

To determine the anti-Streptococcus mutans mechanisms of action of lupinifolin from Albizia myriophylla Benth. (Fabaceae) wood and provide scientific evidence to support the traditional use of the plant against dental caries.

METHODS

The minimum inhibitory concentration (MIC) was evaluated using the broth micro-dilution method. The effects of lupinifolin on bactericidal activity, bacterial cell walls, and membranes were investigated by time-kill, lysis, and leakage assays, respectively. Electron microscopy was utilized to observe any cell morphological changes caused by the compound. Localization of lupinifolin in S. mutans was detected using the thin layer chromatography technique.

RESULTS

The MIC range of lupinifolin against S. mutans (n=6) was 2-4 μg/ml. This compound displayed bactericidal effects on S. mutans ATCC 25175 by 90-99.9% killing at 4MIC-16MIC after 8-24 hours. Lupinifolin-treated cells demonstrated no lysis. However, significant cytoplasmic leakage through the bacterial membrane was observed after treatment with lupinifolin at 4MIC-16MIC. As revealed by ultrastructural analysis, lupinifolin produced some changes in bacterial cell walls and membranes. Moreover, the compound was observed in the cytoplasmic fraction of the lupinifolin-treated cells. These results suggest that lupinifolin can enter the cell of bacteria but does not accumulate in the cell envelope and subsequently disrupts the integrity of the cytoplasmic membrane, leading to cell death.

CONCLUSIONS

The scientific evidence from this study offers valuable insights into the potential role of lupinifolin in pharmaceutical and antibiotic applications and supports the therapeutic effects of A. myriophylla, which has traditionally been used as an alternative treatment for dental caries.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge