English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Apoptosis : an international journal on programmed cell death 2006-Nov

Lymph node cells from BALB/c mice with chronic visceral leishmaniasis exhibiting cellular anergy and apoptosis: involvement of Ser/Thr phosphatase.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Piyali Mukherjee
Parimal C Sen
Asoke C Ghose

Keywords

Abstract

Visceral leishmaniasis (VL) produced in BALB/c mice through intracardial administration of Leishmania donovani amastigotes was accompanied by hepatosplenomegaly with high organ parasite load and lymphadenopathy when followed up to 4-months or so. To elucidate the mechanism of immunosuppression associated with VL, we report here progressive impairment of the proliferative response of lymph node cells (lymphocytes) from infected animals (I-LNC) to in vitro stimulation with the combination of phorbol 12-myristate 13-acetate (PMA) and ionomycin (Io) that could be related to the downregulation of PKC and MAP kinase (ERK 1/2) activation process. Further, pretreatment of I-LNC with the protein phosphatase inhibitor okadaic acid (OA), but not with calyculin A or sodium orthovanadate, significantly restored their proliferative response as well as PMA-induced activation of PKC. A population of LNC (primarily T-lymphocytes) from chronically infected animals was shown to undergo apoptosis, the number of which increased considerably following PMA+ Io stimulation. The apoptotic pathway, which was followed through binding of cells to Annexin V, activation of caspase-3 and fragmentation of DNA, involved destabilization of mitochondria, probably as a result of downregulation of PKC and Bcl-2. Interestingly, prior incubation of I-LNC with OA reversed the state of cell cycle arrest (anergy) and apoptosis through progression of cells from G0/G1 to S and G2/M phases with transcriptional activation of IL-2 and IL-2R genes. Our results suggest that the cellular (immune) dysfunction in VL could be attributed to dephosphorylation of key molecules in the T-lymphocyte signaling pathway by Ser/Thr phosphatase leading to their inactivation.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge