English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Immunology and Cell Biology 2012-Jan

Lysine acetylation in obesity, diabetes and metabolic disease.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Abishek Iyer
David P Fairlie
Lindsay Brown

Keywords

Abstract

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) mediate acetylation and deacetylation of histone proteins and transcription factors. There is abundant evidence that these enzymes regulate the acetylation state of many cytoplasmic proteins, including lysine residues in important metabolic enzymes. Lysine acetylation regulates major cellular functions as a common post-transcriptional modification of proteins, conserved from prokaryotes to humans. In this article, we refer to HATs and HDACs broadly as lysine acetyltransferases (KATs) and deacetylases (KDACs). Lysine acetylation is vitally important in both immunological and metabolic pathways and may regulate the balance between energy storage and expenditure. Obesity, type II diabetes and cardiovascular disease (metabolic syndrome) are widely recognised as features of a chronic low-grade inflammatory state, involving significant alterations in primary immunometabolism. Identifying effective therapeutic and preventive options to treat this multi-factorial syndrome has proven to be very challenging, with an emerging focus on developing anti-inflammatory agents that can combat adiposity and metabolic disease. Here, we summarise current evidence and understanding of innate immune and metabolic pathways relevant to adiposity and metabolic disease regulated by lysine acetylation. Developing this understanding in greater detail may facilitate strategic development of novel and enzyme-specific lysine deacetylase modulators that regulate both metabolic and immune systems.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge