English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomedical Materials Research 1991-Dec

Lysine-enhanced glutaraldehyde crosslinking of collagenous biomaterials.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
A Simionescu
D Simionescu
R Deac

Keywords

Abstract

Crosslinking of collagenous biomaterials currently employs the use of glutaraldehyde. The putative enhancement of glutaraldehyde crosslinking by lysine was investigated in three model systems: bovine pericardium, collagen membranes, and bovine serum albumin. Repetitive sequential treatment of bovine pericardium with glutaraldehyde and lysine and finally with formaldehyde produced a matrix which, by the two criteria used (shrinkage temperature and urea/SDS soluble collagen), was shown to be more highly crosslinked than pericardium fixed in glutaraldehyde alone. Essentially the same results were obtained when membranes prepared from pepsin-soluble pericardial collagen were subjected to sequential glutaraldehyde and lysine treatments, reaching shrinkage temperatures of more than 90 degrees C. Heart valves prepared from lysine-enhanced glutaraldehyde crosslinked bovine pericardium were tested in vitro in an accelerated fatigue tester and have been shown to behave satisfactorily after 300 million cycles. These additional crosslinks proved to be stable in saline at 37 degrees C. Studies on bovine serum albumin attempted to get an insight into the mechanisms of lysine enhancement of glutaraldehyde crosslinking by treating sequentially albumin with glutaraldehyde and lysine and analysis of the products by gel filtration and SDS-PAGE. These studies suggest that free amino groups exposed by proteins are initially reacted with glutaraldehyde and then bridged by the diamino compound (lysine) producing more extensive intermolecular crosslinking than glutaraldehyde alone.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge