English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Yakugaku Zasshi 2019

[Lysophosphatidic Acid Receptor Signaling Underlying Chronic Pain and Neuroprotective Mechanisms through Prothymosin α].

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hiroshi Ueda

Keywords

Abstract

For my Ph.D. research topic, I isolated endogenous morphine-like analgesic dipeptide, kyotorphin, which mediates Met-enkephalin release, and discovered kyotorphin synthetase, a putative receptor and antagonist. Furthermore, I succeeded in purifying μ-opioid receptor and functional reconstitution with purified G proteins. After receiving my full professor position at Nagasaki University in 1996, I worked on two topics of research, molecular mechanisms of chronic pain through lysophosphatidic acid (LPA) and identification and characterization of neuroprotective protein, prothymosin α. In a series of studies, we have shown that LPA signaling defines the molecular mechanisms of neuropathic pain and fibromyalgia in terms of development and maintenance. Above all, the discovery of feed-forward system in LPA production and pain memory may contribute to better understanding of chronic pain and future analgesic drug discovery. Regarding prothymosin α, we first discovered it as neuronal necrosis-inhibitory molecule through two independent mechanisms, such as toll-like receptor and F0/F1 ATPase, both which protect neurons through indirect mechanisms. Prothymosin α is released by non-classical and non-vesicular mechanisms on various stresses, such as ischemia, starvation, and heat-shock. Thus it may be called a new type of neuroprotective damage-associated molecular patterns (DAMPs)/Alarmins. Heterozygotic mice showed a defect in memory-learning and neurogenesis as well as anxiogenic behaviors. Small peptide, P6Q derived from prothymosin α retains neuroprotective actions, which include blockade of cerebral hemorrhage caused by late treatment with tissue plasminogen activator in the stroke model in mice.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge