English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmaceutical and Biomedical Analysis 2017-Jul

Macro-Raman spectroscopy for bulk composition and homogeneity analysis of multi-component pharmaceutical powders.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Hui Wang
David Barona
Sulayman Oladepo
Lisa Williams
Susan Hoe
David Lechuga-Ballesteros
Reinhard Vehring

Keywords

Abstract

A new macro-Raman system equipped with a motorized translational sample stage and low-frequency shift capabilities was developed for bulk composition and homogeneity analysis of multi-component pharmaceutical powders. Different sampling methods including single spot and scanning measurement were compared. It was found that increasing sample volumes significantly improved the precision of quantitative composition analysis, especially for poorly mixed powders. The multi-pass cavity of the macro-Raman system increased effective sample volumes by 20 times from the sample volume defined by the collection optics, i.e., from 0.02μL to about 0.4μL. A stochastic model simulating the random sampling process of polydisperse microparticles was used to predict the sampling errors for a specific sample volume. Comparison of fluticasone propionate mass fractions of the commercial products Flixotide® 250 and Seretide® 500 simulated for different sampling volumes with experimentally measured compositions verified that the effective sample volume of a single point macro-Raman measurement in the multi-pass cavity of this instrument was between 0.3μL and 0.5μL. The macro-Raman system was also successfully used for blend uniformity analysis. It was concluded that demixing occurred in the binary mixture of l-leucine and d-mannitol from the observation that the sampling errors indicated by the standard deviations of measured leucine mass fractions increased during mixing, and the standard deviation values were all larger than the theoretical lower limit determined by the simulation. Since sample volume was shown to have a significant impact on measured homogeneity characteristics, it was concluded that powder homogeneity analysis results, i.e., the mean of individual test results and absolute and relative standard deviations, must be presented together with the effective sample volumes of the applied testing techniques for any measurement of powder homogeneity to be fully meaningful.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge