English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Virology 2005-May

Macrophage inflammatory protein 1alpha inhibits postentry steps of human immunodeficiency virus type 1 infection via suppression of intracellular cyclic AMP.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Carol-Ann Amella
Barbara Sherry
David H Shepp
Helena Schmidtmayerova

Keywords

Abstract

Primary isolates of human immunodeficiency virus type 1 (HIV-1) predominantly use chemokine receptor CCR5 to enter target cells. The natural ligands of CCR5, the beta-chemokines macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES, interfere with HIV-1 binding to CCR5 receptors and decrease the amount of virions entering cells. Although the inhibition of HIV-1 entry by beta-chemokines is well documented, their effects on postentry steps of the viral life cycle and on host cell components that control the outcome of infection after viral entry are not well defined. Here, we show that all three beta-chemokines, and MIP-1alpha in particular, inhibit postentry steps of the HIV-1 life cycle in primary lymphocytes, presumably via suppression of intracellular levels of cyclic AMP (cAMP). Productive HIV-1 infection of primary lymphocytes requires cellular activation. Cell activation increases intracellular cAMP, which is required for efficient synthesis of proviral DNA during early steps of viral infection. Binding of MIP-1alpha to cognate receptors decreases activation-induced intracellular cAMP levels through the activation of inhibitory G proteins. Furthermore, inhibition of one of the downstream targets of cAMP, cAMP-dependent PKA, significantly inhibits synthesis of HIV-1-specific DNA without affecting virus entry. These data reveal that beta-chemokine-mediated inhibition of virus replication in primary lymphocytes combines inhibitory effects at the entry and postentry levels and imply the involvement of beta-chemokine-induced signaling in postentry inhibition of HIV-1 infection.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge