English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
FASEB Journal 2018-Aug

Mangiferin enhances endochondral ossification-based bone repair in massive bone defect by inducing autophagy through activating AMP-activated protein kinase signaling pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yun Bai
Chuan Liu
Lei Fu
Xiaoshan Gong
Ce Dou
Zhen Cao
Hongyu Quan
Jianmei Li
Fei Kang
Jingjin Dai

Keywords

Abstract

Endochondral ossification is crucial for bone formation in both adult bone repair process and embryo long-bone development. In endochondral ossification, bone marrow-derived mesenchymal stem cells (BMSCs) first differentiate to chondrocytes, then BMSC-derived chondrocytes endure a hypertrophic process to generate new bone. Endochondral ossification-based bone repair is a promising strategy to cure massive bone defect, which is a major clinical issue in orthopedics. However, challenges still remain for this novel strategy. One challenge is to ensure the sufficient hypertrophic differentiation. Another is to maintain the survival of the above hypertrophic chondrocytes under the hypoxic environment of massive bone defect. To solve this issue, mangiferin (MAG) was introduced to endochondral ossification-based bone repair. In this report, we proved MAG to be a novel autophagy inducer, which promoted BMSC-derived hypertrophic chondrocyte survival against hypoxia-induced injury through inducing autophagy. Furthermore, MAG enhances hypertrophic differentiation of BMSC-derived chondrocytes via upregulating key hypertrophic markers. Mechanistically, MAG induced autophagy in BMSC-derived chondrocytes by promoting AMPKα phosphorylation. Additionally, MAG balanced the expression of sex-determining region Y-box 9 and runt-related transcription factor 2 to facilitate hypertrophic differentiation. These results indicated that MAG was a potential drug to improve the efficacy of endochondral ossification-based bone repair in massive bone defects.-Bai, Y., Liu, C., Fu, L., Gong, X., Dou, C., Cao, Z., Quan, H., Li, J., Kang, F., Dai, J., Zhao, C., Dong, S. Mangiferin enhances endochondral ossification-based bone repair in massive bone defect by inducing autophagy through activating AMP-activated protein kinase signaling pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge