English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Experimental Lung Research 2015-Jun

Mast cell stabilization with sodium cromoglycate modulates pulmonary vessel wall remodeling during four-day hypoxia in rats.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Tomáš Novotný
Jakub Krejčí
Jana Malíková
Vojtěch Švehlík
Roman Wasserbauer
Jiří Uhlík
Luděk Vajner

Keywords

Abstract

OBJECTIVE

In rats, the environment with low content of oxygen induces hypoxic pulmonary hypertension. Remodeling of pulmonary resistance arteries is particularly triggered by the mast cell degranulation products, e.g., rodent-like interstitial collagenase (matrix metalloproteinase 13). Administration of sodium cromoglycate leads to stabilization of mast cell granules, and thus to the modified remodeling process.

METHODS

During four-day hypoxia, we treated rats with sodium cromoglycate. Pulmonary vascular remodeling was assessed as well as counts of periarterial pulmonary mast cells, both total and matrix metalloproteinase 13-positive ones.

RESULTS

Four-day hypoxia induced remodeling of both resistance arteries and large conduit arteries. We have found increase in the tunica media thickness of resistance arteries. Tunica adventitia thickness of both resistance arteries and large conduit arteries with a diameter of over 300 μm increased as well; the latter ones revealed increase in the number of vasa vasorum in their walls. Mast cell stabilization suppressed hypoxic pulmonary vascular remodeling in resistance pulmonary arteries. Four-day hypoxia led to changes in distribution of toluidine blue-detected and MMP-13 positive periarterial mast cells; this redistribution was also influenced by the administration of sodium cromoglycate.

CONCLUSIONS

The number of pulmonary periarterial mast cells seemingly decreases during hypoxia due to their degranulation, which disables their identification. Large conduit arteries do not affect final blood pressure in the pulmonary vascular bed; however, their structure changes substantially under hypoxia. Such remodeling changes are not mediated by mast cell products only since they have occurred in spite of stabilization of mast cell granules.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge