English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Physics 2013-May

Measurement of the Soret coefficients for a ternary hydrocarbon mixture in low gravity environment.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Amirhossein Ahadi
S Van Varenbergh
M Ziad Saghir

Keywords

Abstract

While the Soret coefficients of binary mixtures have been widely measured in the past, here we report the first measurement of the Soret coefficient of a ternary mixture in a low gravity environment on board the International Space Station. The sample was contained in a 10 mm × 10 mm × 5 mm (w, l, h) cell and was monitored by means of a Mach-Zehnder interferometer at two wavelengths. The analyzed sample was a mixture of tetrahydronaphthalene, isobutylbenzene, and dodecane at the weight fraction of 0.1∕0.8∕0.1. While the lateral walls of the cell did not possess complete thermal isolation, the separation of the components in the central region of the cavity was comparable to purely diffusive behavior. The same experimental parameters have been monitored in Run7 and Run12 of the Selectable Optical Diagnostics Instrument-Diffusion and Soret Coefficient experiment in order to verify the accuracy of the setup. The similarity of the results demonstrates the repeatability of thermodiffusion experiments in a microgravity environment. There was nearly equal separation of the tetrahydronaphthalene and isobutylbenzene components in opposite directions, while dodecane experienced a weak separation in the same direction as isobutylbenzene. Finally, Fourier image processing and calculations of the transient separation of the components were used to analyze the heat transfer in the system and to measure the Soret coefficients for this ternary mixture. The successful measurements shown in this work can serve as the standard for ground experiments and for numerical modeling of hydrocarbon mixtures.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge