English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biomedical Materials Research - Part A 2006-Sep

Mechanical properties of porous, electrosprayed calcium phosphate coatings.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S C G Leeuwenburgh
J G C Wolke
L Lommen
T Pooters
J Schoonman
J A Jansen

Keywords

Abstract

Mechanical properties of calcium phosphate coatings (CaP), deposited using the electrostatic spray deposition (ESD) technique, have been characterized using a range of analytical techniques, including tensile testing (ASTM C633), fatigue testing (ASTM E855), and scratch testing using blunt and sharp scratch styli. Moreover, a simple explantation procedure was successfully introduced using ESD-coated, threaded dental implants to characterize the mechanical performance of CaP coatings qualitatively under conditions that mimic clinical situations as close as possible. Generally, all analysis techniques revealed that ESD coatings need to be crystallized in order to ensure interfacial adhesion to the substrate and sufficient mechanical strength of the superficial reticular structure. Crystalline carbonated hydroxyapatite coatings (CHA, heat-treated at 700 degrees C) were resistant to fatigue as well as to plastic ploughing deformation by means of various scratch styli, and the fragile surface structure of ESD coatings was maintained to a large extent after unscrewing CHA-coated dental implants from femoral condyles of goat cadavers. From these experiments, it was concluded that interfacial adhesion of crystalline CHA ESD coatings to the titanium substrate was sufficient, but that mechanical strength of the superficial architecture of ESD coatings need to be optimized for applications where high shear and compressive stresses are imposed onto the rather fragile coating surface of reticular ESD morphologies.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge