English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 1990-Jul

Mechanism for the Activation of Plasma Membrane H-ATPase from Rice (Oryza sativa L.) Culture Cells by Molecular Species of a Phospholipid.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K Kasamo

Keywords

Abstract

The activation of H(+)-ATPase solubilized from plasma membrane of rice (Oryza sativa L. var Nipponbare) culture cells was examined by the exogenous addition of various phospholipids, free fatty acids, glycerides, polar head groups of phospholipids and molecular species of phosphatidylcholine (PC). H(+)-ATPase activity appeared to be stimulated by phospholipids in the following order: asolectin > phosphatidylserine > PC > lysophosphatidylcholine > phosphatidylglycerol, and maximal ATPase activation was noted at around 0.05 to 0.03% (w/v) of asolectin or molecular species of PC. Polar head groups such as glycerol, inositol, and serine only slightly activated ATPase activity or not at all, while ethanolamine and choline had no effect. Activation was dependent on the degree of saturation or unsaturation of the fatty acyl chain and its length. The activity decreased with increase in the length of fatty acyl chain from dimyristoryl(14:0)-PC to distearoyl(18:0)-PC and the degree of unsaturation from dioleoyl(18:1)-PC to dilinolenoyl(18:3)-PC. Maximum activation was observed when PC possessing 1-myristoyl(14:0)-2-oleoyl(18:1) or 1-oleoyl-2-myristoyl was added to the reaction mixture. These data show that the activation of plasma membrane H(+)-ATPase by PC depends on a combination of saturated (myristic acid 14:0, palmitic acid 16:0, and stearic acid 18:0) and unsaturated (oleic acid 18:1, linoleic acid 18:2, and arachidonic acid 20:4) fatty acids at the sn-1 and sn-2 positions of the triglycerides.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge