English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmaceutical Sciences 1998-Jan

Mechanism of alpha-cyclodextrin induced hemolysis. 2. A study of the factors controlling the association with serine-, ethanolamine-, and choline-phospholipids.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J C Debouzy
F Fauvelle
S Crouzy
L Girault
Y Chapron
M Göschl
A Gadelle

Keywords

Abstract

A nuclear magnetic resonance (NMR) spectroscopy and molecular modeling study of the interaction between alpha-cyclodextrin (alpha-CD) and phospholipids with serine, ethanolamine, or choline headgroups is presented. The experimental approach is based on 31P and 1H NMR measurements on small unilamellar vesicles (SUV), multilamellar systems (MLV), and aqueous suspensions of lipids using a direct complex preparation with alpha-CD. Molecular dynamics computer simulations are used to investigate the trajectory of alpha-CD in the vicinity of a membrane surface and the influence of the charge and dipole moment of the phospholipid headgroups. These factors of charge and orientation of dipole moment seem to play a key role in the interaction of phospholipids with alpha-CD and reflect very well the experimentally observed selectivity of the phospholipid -alpha-CD approach. However, with this approach, there is no evidence for the formation of a complex with the phospholipid headgroup (except for phosphatidylinositol) that results from electrostatic forces. Rather, after a possible extraction of the lipid from the membrane, a classical inclusion of the sn-2 chain in the cavity of alpha-CD occurs. This step depends on the alkyl chain length and saturation state of the lipids as well as on their organization (i.e., as vesicles or dispersions). Based on our results, chemical modifications of the alpha-CD molecule to control the hemolytic properties of alpha-CD are discussed.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge