English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Free Radical Biology and Medicine 2005-May

Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Anna Aronis
Zecharia Madar
Oren Tirosh

Keywords

Abstract

The aim of this study was to elucidate death pathways in macrophages resulting from exposure to triacylglycerols (TG), mechanisms which may be relevant to the development of atherosclerosis. A commercial TG emulsion (lipid emulsion, LE; 0.1-1.5 mg lipids/ml) was added to J774.2 cells in culture. Within the first 24 h after TG treatment, cellular reactive oxygen species (ROS) levels were strongly elevated and basal caspase-3 activity was attenuated. In contrast, after 48 h, ROS production was arrested. TG-mediated ROS production was demonstrated to be via mitochondrial complex 1 of the electron-transfer chain since the inhibitor of complex 1 rotenone significantly attenuated the cellular ROS levels in TG-treated cells. The TG effect culminated in cell death, with no caspase-3 activation. We therefore evaluated the effect of TG on apoptotic cells showing high caspase activity. TG induced elevated ROS levels and suppressed caspase-3 in apoptotic cells pretreated for 24 h with cycloheximide. Dual staining with propidium iodide and Annexin V followed by flow cytometric analysis showed that TG facilitated cell death with clear necrotic characteristics. To elucidate whether the necrotic cell death process is indeed oxidant dependent, antioxidant protection was studied. Treatment with N-acetylcysteine (NAC) (0.5 mM), ascorbic acid (0.5 mM), and resveratrol (0.2 mM) protected against the TG lipotoxic effect, while, surprisingly, lipophilic antioxidants did not. The combination of NAC, ascorbic acid, and resveratrol, each at much lower concentrations, had a synergistic protective effect. In conclusion, we show here for the first time that exposure to TG can directly regulate lipotoxicity in macrophages by inducing mitochondria-mediated prolonged oxidative stress; this, in turn, can inactivate the apoptotic caspase system, resulting in necrotic cell death which can be prevented by specific antioxidants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge