English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Medical Virology 2004-Apr

Mechanisms of coxsackievirus B5 mediated beta-cell death depend on the multiplicity of infection.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Suvi Rasilainen
Petri Ylipaasto
Merja Roivainen
Risto Lapatto
Tapani Hovi
Timo Otonkoski

Keywords

Abstract

Coxsackievirus infections may trigger and accelerate pancreatic beta-cell death, leading to type I diabetes. Unrestricted coxsackievirus B5 replication in cultured beta-cells inoculated with high multiplicity leads to rapid lytic cell death. Evidence from other virus-host cell systems indicates that host cell responses to infection may depend on the multiplicity of infection (MOI). Thus, the aim of this study was to compare the mechanisms of beta-cell death during high versus low multiplicity of coxsackievirus B5 infection. Cultures of highly differentiated mouse insulinoma cells and primary adult human islets were infected with coxsackievirus B5 at multiplicities of >1,000 or <0.5 TCID50 per cell. The results of nuclear morphology and viability stainings, TUNEL staining and electrophoretic DNA fragmentation analysis showed high multiplicity infection to predominantly induce necrosis and transient apoptosis. In low multiplicity culture, however, necrosis was only moderately induced and apoptosis increased steadily with time. This was best demonstrated by a tenfold higher apoptosis/necrosis ratio than after high multiplicity inoculation. Expression of gamma-glutamyl cysteine synthetase increased in both infective cultures but the level of intracellular glutathione permanently depleted only at high multiplicity and recovered fully at low multiplicity. Thus, apoptosis represents an important mechanism of beta-cell death after low multiplicity of coxsackievirus B5 infection. This process is associated with maintenance of a physiological intracellular glutathione profile differing dramatically from the high multiplicity infection during which necrosis dominates and intracellular thiol balance deteriorates. These data suggest that the pattern and mechanisms of coxsackievirus B5 infection induced beta-cell death depend on the MOI.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge