English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of neural transmission. Supplementum 1998

Mechanisms of neurofibrillary degeneration and the formation of neurofibrillary tangles.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
K Iqbal
A C Alonso
C X Gong
S Khatoon
J J Pei
J Z Wang
I Grundke-Iqbal

Keywords

Abstract

Alzheimer disease (AD) has polyetiology. Independent of the etiology the disease is characterized histopathologically by the intraneuronal accumulation of paired helical filaments (PHF), forming neurofibrillary tangles, neuropil threads and dystrophic neurites surrounding the extracellular deposits of beta-amyloid in plaques, the second major lesion. The clincal expression of AD correlates with the presence of neurofibrillary degeneration; beta-amyloid alone does not produce the disease clinically. Thus arresting neurofibrillary degeneration offers a promising key target for therapeutic intervention of AD. The major protein subunit of PHF is the microtubule-associated protein tau. Tau in AD brain, especially PHF, is abnormally hyperphosphorylated and glycosylated. With maturation, the tangles are increasingly ubiquitinated. Levels of tau and conjugated ubiquitin are elevated both in AD brain and CSF. The AD abnormally phosphorylated tau (AD P-tau) does not promote microtubule assembly, but on dephosphorylation its microtubule promoting activity is restored to approximately that of the normal tau. The AD P-tau competes with tubulin in binding to normal tau, MAP1 and MAP2 and inhibits their microtubule assembly promoting activities. Furthermore, the AD P-tau sequesters normal MAPs from microtubules. The association of AD P-tau with normal tau but not with MAP1 or MAP2 results in the formation of tangles of 3.3 +/- 0.5 mm filaments. Deglycosylation of Alzheimer neurofibrillary tangles with endoglycosidase F/N-glycosidase F untwists the PHF resulting in tangles of thin filaments similar to those formed by association between the AD P-tau and normal tau. Dephosphorylation or deglycosylation plus dephosphorylation but not deglycosylation alone restores the microtubule assembly promoting activity of tau. In vitro AD P-tau can be dephosphorylated by protein phosphatases PP-2B, PP-2A and PP-1 but not PP-2C and all the three tau phosphatases are present in brain neurons. Tau phosphatase activity is decreased by approximately 30% in AD brain. Inhibition of PP-2A and PP-1 activities in SY5Y neuroblastoma by 10 nM okadaic acid causes breakdown of microtubules and the degeneration of these cells. It is suggested (I) that a defect(s) in the protein phosphorylation/dephosphorylation system(s) leads to a hyperphosphorylation of tau, (ii) that this altered tau causes disassembly of microtubules and consequently a retrograde neuronal degeneration; (iii) a pharmacological approach to AD is to enhance the tau phosphatase activity; and (iv) that CSF tau and conjugated ubiquitin levels are promising markers of AD brain pathology.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge