English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2004-Dec

Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Paul V Viitanen
Andrew L Devine
Muhammad Sarwar Khan
Deborah L Deuel
Drew E Van Dyk
Henry Daniell

Keywords

Abstract

p-Hydroxybenzoic acid (pHBA) is the major monomer in liquid crystal polymers. In this study, the Escherichia coli ubiC gene that codes for chorismate pyruvate-lyase (CPL) was integrated into the tobacco (Nicotiana tabacum) chloroplast genome under the control of the light-regulated psbA 5' untranslated region. CPL catalyzes the direct conversion of chorismate, an important branch point intermediate in the shikimate pathway that is exclusively synthesized in plastids, to pHBA and pyruvate. The leaf content of pHBA glucose conjugates in fully mature T1 plants exposed to continuous light (total pooled material) varied between 13% and 18% dry weight, while the oldest leaves had levels as high as 26.5% dry weight. The latter value is 50-fold higher than the best value reported for nuclear-transformed tobacco plants expressing a chloroplast-targeted version of CPL. Despite the massive diversion of chorismate to pHBA, the plastid-transformed plants and control plants were indistinguishable. The highest CPL enzyme activity in pooled leaf material from adult T1 plants was 50,783 pkat/mg of protein, which is equivalent to approximately 35% of the total soluble protein and approximately 250 times higher than the highest reported value for nuclear transformation. These experiments demonstrate that the current limitation for pHBA production in nuclear-transformed plants is CPL enzyme activity, and that the process becomes substrate-limited only when the enzyme is present at very high levels in the compartment of interest, such as the case with plastid transformation. Integration of CPL into the chloroplast genome provides a dramatic demonstration of the high-flux potential of the shikimate pathway for chorismate biosynthesis, and could prove to be a cost-effective route to pHBA. Moreover, exploiting this strategy to create an artificial metabolic sink for chorismate could provide new insight on regulation of the plant shikimate pathway and its complex interactions with downstream branches of secondary metabolism, which is currently poorly understood.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge